Chemistry Letters 1999 1103 ## H₂ or O₂ Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi³⁺ with 6s² Configuration and d⁰ Transition Metal Ions Akihiko Kudo* and Satoshi Hijii Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Received June 28, 1999; CL-990568) $Bi_2W_2O_9$, Bi_2WO_6 , and Bi_3TiNbO_9 consisting of layered structure with perovskite slabs interleaved with Bi_2O_2 layers showed photocatalytic activities for H_2 evolution from an aqueous methanol solution and O_2 evolution from an aqueous silver nitrate solution. Bi_2WO_6 with the Aurivillius structure and a 2.8 eV band gap was active for the O_2 evolution reaction under visible light irradiation (λ >420 nm). Bismuth mixed oxides with the Aurivillius structure represented by $(Bi_2O_2)^{2+}(A_{n\!-\!1}B_nO_{3n\!+\!1})^{2-}$ $(A\!=\!Ba,\;Bi,\;Pb,\;etc.,\;$ B=Ti, Nb, W, etc.) possess unique layered structures in which perovskite slabs of $(A_{n-1}B_nO_{3n+1})^{2-}$ are sandwiched between $(Bi_2O_2)^{2+}$ layers. 1-6 Dielectric, 1,6-9 ion conductive, 10,11 luminescent¹² and catalytic¹³ properties of this material family have attracted attention. One of the authors has recently reported that BiVO₄ is a new photocatalyst working under visible light irradiation.¹⁴ Therefore, photocatalytic properties of the bismuth mixed oxides with the Aurivillius structure and the relative compounds are of interest. In the present paper, photocatalytic activities of oxides consisting of Bi3+ with 6s2 configuration, and Ti⁴⁺, Nb⁵⁺, W⁶⁺, and Mo⁶⁺ with d⁰ were investigated in order to find new photocatalysts based on bismuth mixed oxides with Bi-W oxides were especially paid structural regularities. attention in the present study. Samples were synthesized in air using alumina crucibles by conventional solid state reactions. Starting materials used were as follows: Bi₂O₃ (Kanto Chemical, purity; 99.9%), WO₃ (Nacalai tesque, purity; 99.5%), TiO2 (Kanto Chemical, purity; 99.0%), Nb₂O₅ (Kanto Chemical, purity; 99.95%), BaCO₃ (Kanto Chemical, purity; 99.0%). The calcination temperature and time were as follows: 1023 K for 5 h and 1123 K for 10 h for Bi₂W₂O₉, 1023 K for 5 h and 1073 K for 20 h for Bi₁₄W₂O₂₇, ¹⁵ 1023 K for 5 h and 1073 K for 24 h for Bi₂WO₆, 1123 K for 5 h and I473 K for 10 h for Bi₂Ti₂O₇ (a small amount of Bi₄Ti₃O₁₂ was detected by XRD in the product), 1073 K for 6 h and 1373 K for 10 h for Bi₄Ti₃O₁₂, 1073 K for 5 h and 1373 K for 10 h for Bi₃TiNbO₉, 1073 K for 5 h and 1323 K for 10 h for All samples were ground once between the BaBi₄Ti₄O₁₅. calcinations. Bi₂MoO₆ (Kojundo Chemical, purity; 99.9%) was purchased and used as received. The photocatalytic reactions were carried out in a closed gas circulation system. H_2 evolution from aqueous methanol solutions (H_2O 350 ml + CH_3OH 20 ml) and O_2 evolution from aqueous silver nitrate solutions (0.05 mol/l, 350 ml) were investigated as test reactions to evaluate the photocatalytic properties. When the H_2 evolution reaction was carried out, P_1 was photodeposited on photocatalysts from $H_2P_1C_1G_2$ during the reaction. The catalyst powder (1 g) was dispersed in aqueous solutions by a magnetic stirrer in an inner irradiation P_2 year P_2 cell. The light source was a 450 W high pressure mercury lamp (USHIO; UM452). The amounts of P_2 and P_3 evolved were determined by using a gas chromatograph (Shimadzu; P_3 GC-8A, TCD, Ar carrier). Photocatalytic reactions under visible light irradiation were carried out by using an external irradiation Pyrex cell, a 300 W Xe illuminator (CERMAX; LX300), and a cut-off filter (L42). Diffuse reflection spectra were obtained by using a UV-VIS-NIR spectrometer (JASCO; Ubest-570) and was converted from reflection to absorbance by the Kubelka-Munk method. Figures 1 and 2 show diffuse reflectance spectra of Bi-(W, Mo) and Bi-(Ti, Nb) oxides, respectively. All spectra possessed steep absorption edges. The diffuse reflectance spectra revealed that Bi₂WO₆, Bi₇W₂O₂₇, and Bi₂Ti₂O₇ absorbed visible light. **Figure 1.** Diffuse reflectance spectra of Bi-W and Bi-Mo oxides. (a): Bi₂WO₆, (b): Bi₂W₂O₉, (c): Bi₇W₂O₂₇, (d): Bi₂MoO₆. **Figure 2.** Diffuse reflectance spectra of Bi-Ti-Nb oxides. (a): $Bi_2Ti_2O_7$, (b): $Bi_4Ti_3O_{12}$, (c): Bi_3TiNbO_9 , (d): $BaBi_4Ti_4O_{15}$. Table 1 shows band gaps estimated from the diffuse reflectance spectra and photocatalytic activities for H_2 or O_2 evolution from aqueous solutions in the presence of sacrificial reagents. $Bi_2W_2O_9$, Bi_2WO_6 , and Bi_3TiNbO_9 showed relatively high activities among oxides listed in Table 1. Bi_2WO_6 and Bi_3TiNbO_9 possess the Aurivillius structure as shown in Figure 3 while $Bi_2W_2O_9^{3,6}$ has the layered structure in which bismuth ions Photocatalytic activities for H₂ evolution from aqueous methanol solutions and O2 evolution from aqueous AgNO₃ solutions on layered oxides consisting of Bi³⁺ | Catalyst | Band gap /eV | Activity / μmol/h | | |---|--------------|-----------------------------|----------------| | | | H ₂ ^a | O ₂ | | Bi ₂ W ₂ O ₉ | 3.0 | 18 | 281 | | Bi_2WO_6 | 2.8 | 1.6 | 34 | | $\mathrm{Bi}_{14}\mathrm{W}_{2}\mathrm{O}_{27}$ | 2.8 | 0 | 0.7 | | Bi ₂ Ti ₂ O ₇ | 2.9 | 0 | 0.7 | | $Bi_4Ti_3O_{12}$ | 3.1 | 0.6 | 3.0 | | Bi ₃ TiNbO ₉ | 3.1 | 33 | 31 | | Bi_2MoO_6 | 3.0 | 0.01 | 2.1 | | BaBi ₄ Ti ₄ O ₁₅ | 3.3 | 8.2 | 3.7 | Catalyst; 1 g, light source; 450 W high pressure mercury lamp, reaction cell; inner irradiation cell made of Pyrex. a 1 wt% of Pt was loaded. Figure 3. Structure of Bi₂WO₆ and Bi₃TiNbO₉.⁴ (Bi(2) in Figure 3) are taken away from A sites in the perovskite slab of Bi₃TiNbO₉ with 2-layers thickness. Namely, the tungstate layers of Bi₂W₂O₉ have ReO₃ structure as well as WO₃. The corner-sharing structure seems to contribute to the high photocatalytic activity of Bi₂W₂O₉ for the O₂ evolution. H₂ was evolved on Bi₂W₂O₉ even if Bi₂O₃ and WO₃ of the starting materials did not have such an activity. The band gaps suggest that the activity for the H₂ evolution is due to the high conduction band level of Bi₂W₂O₉ compared with that of Bi₂O₃ and WO3. The dependence of the photocatalytic H2 evolution over Bi₂W₂O₉ upon the amount of Pt loaded was investigated. When Pt was not loaded the activity was very low (1.3 μ mol/h). The maximum activity (55 μ mol/h) was obtained when 0.1 wt% of Pt was loaded. Bi₃TiNbO₉ with 2-layers thickness also showed the H₂ evolution activity. In contrast, the activity of Bi₄Ti₃O₁₂ with 3-layers thickness was negligible even if the band gap of Bi₄Ti₃O₁₂ was similar to that of Bi₃TiNbO₉. Among Bi₂WO₆, Bi₂W₂O₉, and Bi₃TiNbO₉ with reasonable photocatalytic activities, only Bi₂WO₆ can absorb visible light. Bi₂WO₆ showed the O₂ evolution activity under visible light irradiation (λ>420 nm) as shown in Figure 4. The initial rate of the O_2 evolution was 3 μ mol/h. WO₃ is a well-known photocatalyst which shows a high activity for photocatalytic O₂ evolution. ¹⁶ However, among metal tungstates, only Na₂W₃O₁₀ in which the tungstate layer consists of corner and edge-sharing WO₆ units¹⁷ shows the photocatalytic activities for H2 or O2 evolution under UV irradiation. 18 In the present study, Bi₂W₂O₉ has arisen as one of Figure 4. O_2 evolution from an aqueous AgNO₃ solution (0.05 mol/l) under visible light irradiation (λ>420 nm) over a Bi₂WO₆ photocatalyst. novel tungstate photocatalysts which are active for H2 or O2 evolution from aqueous solutions. Domen and co-workers have extensively investigated the photocatalytic activities of layered perovskite oxides. 19,20 The perovskite slabs of the photocatalysts reported so far consist of TiO₆ and NbO₆ units as seen in K₂La₂Ti₃O₁₀ and KCa₂Nb₃O₁₀. In contrast to them, the perovskite slabs of Bi₂WO₆ and Bi₂W₂O₉ photocatalysts consist of WO6 units corner-shared. Thus, the Bi-W oxide with the Aurivillius and its relative structure was found to be a new group of photocatalyst materials from the view point of the component and the structure. This work was supported by New Energy and Industrial Development Organization (NEDO)/Research Institute of Innovate Technology for the Earth (RITE), Core Research for Evolutional Science and Technology (CREST), and a Grant-in-Aid (No. 11640601) from the Ministry of Education, Science, Sports, and Culture, Japan. ## References - R. E. Newnham, R. W. Wolfe, and J. F. Dorrian, Mater. Res. Bull., 6, 1029 (1971). - J. L. Hutchison, J. S. Anderson, and C. N. R. Rao, Proc. R. Soc. Lond. **355**, 301 (1977). - Y. Bando, A. Watanabe, Y. Sekikawa, M. Goto, and S. Horiuchi, Acta - Crystallogr. Sect. A, 35, 142 (1979). B. Frit and J. P. Mercurio, J. Alloys Compd., 188, 27 (1992). M.T. Montero, P. Millán, P. Durán-Martín, B. Jiménez, and A. Catro, Mater. Res. Bull., 33, 1103 (1998). - A. Watanabe and M. Goto, J. Less-Common Met., 61, 265 (1978). - S. E. Cummins and L. E. Cross, J. Appl. Phys., 39, 2268 (1968). - M. Hamada, H. Tabata, and T. Kawai, Thin Solid Films, 306, 6 (1997). - T. Hirose, M. Kawaminami, K. Obara, M. Arakawa, and H. Takeuchi, J. Phys. Soc. Jpn., 62, 1758 (1993). N. Baux, R. N. Vannier, G. Mairesse, and G. Nowogrocki, Solid State - Ionics, 91, 243 (1996). 11 M. S. Islam, S. Lazure, R.N. Vannier, G. Nowogrocki, and G. Mairesse, - J. Mater. Chem., 8, 655 (1998). - 12 O. M. Bordun, Inorg. Mater., 34, 1270 (1998). - 13 P. K. Sinhamahapatra, S. Sinhamahapatra, and S. K. Bhattacharyya, Kris. Tech., 12, 1205 (1977). - 14 A. Kudo, K. Ueda, H. Kato, and I. Mikami, Catal. Lett., 53, 229 (1998). - 15 A. Watanabe, N. Ishizawa, and M. Kato, J. Solid State Chem., 60, 252 (1985). - 16 J. R. Darwent and A. Mills, J. Chem. Soc., Faraday Trans. 2, 78, 359 (1982). - 17 K. Viswanathan, J. Chem. Soc., Dalton Trans., 1974, 2170. - 18 A. Kudo and H. Kato, Chem. Lett., 1997, 421. - 19 K. Domen, Y. Ebina, T. Sekine, A. Tanaka, J. Kondo, and C. Hirose, Catal. Today, 16, 479 (1993). - 20 T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, and K. Domen, Chem. Mater., 9, 1063 (1997).